Chains and Antichains in the Bipartite Cambrian and Tamari Lattices

Ben Drucker

Eli Garcia

Aubrey Rumbolt

Rose Silver

UCONN REU

Posets

Partially Ordered Set (Poset): A set equipped with a relation \leq

Comparing Elements in the Poset

$$
\begin{gathered}
\{x, y\} \leq\{x, y, z\} \\
\{x, y\} \not \subset\{y, z\}
\end{gathered}
$$

Posets

Partially Ordered Set (Poset): A set equipped with a relation \leq

Posets

Partially Ordered Set (Poset): A set equipped with a relation \leq for which the following hold:

1. Reflexivity: $a \leq a$
2. Transitivity: if $a \leq b$ and $b \leq c$, then $a \leq c$
3. Antisymmetry: if $a \leq b$ and $b \leq a$, then $a=b$

TODAY's TALK

- Describe the Bipartite Cambrian Lattice \& Tamari Lattice
- Prove interesting properties of these two posets

Note: A lattice is a type of poset

Part 1
 The Bipartite Cambrian Lattice

[Reading; 2012]

BIPARTITE POLYGON $(n=6)$

- Draw a polygon with $n+2$ vertices
- Label vertices odd and even as above

The Elements: Triangulations

- Triangulate the polygon

The Elements: Triangulations

- Triangulate the polygon
- These triangulations are the elements in our poset!

Defining: Comparable Elements

- Two polygons sharing an arrow differ by one diagonal flip
- Arrow points towards polygon with the more positive diagonal

Bipartite Cambrian Lattice

[Reading; 2012]
Note: Elements listed higher in the poset have higher-sloped diagonals

CHAINS AND ANTICHAINS

- Chain: A subset in which every pair of elements is comparable
- Chain Size: \# elements in the chain

- Antichain: A subset in which every pair of elements is incomparable
- Antichain Size: \# elements in the antichain

Research Problem

Question: For all n, how many maximum-length chains share only their first and last elements?

Research Problem

Question: For all n, how many maximum-length chains share only their first and last elements?

Theorem: The maximum attainable number is $\left\lfloor\frac{n-1}{2}\right\rfloor$

ONE KEY IDEA: FOCUS ON A SPECIAL SUBPOSET

$$
S_{1} s_{3} S_{5} S_{2} S_{4} S_{6}
$$

Part 2
 The Tamari Lattice

Creating the Tamari Lattice

- Draw a polygon with $n+2$ vertices
- Label vertices in increasing order

Note: The only difference from before is how we order the vertices!

Creating the Tamari Lattice

- Triangulate the polygon
- These triangulations are the elements in our poset!

The TAmARI Lattice

Note: As before, elements listed higher in the poset have higher-sloped diagonals

Research Results

Question: For all n, what is the size of the largest antichain?

Research Results

Question: For all n, what is the size of the largest antichain? Theorem: The largest antichain has size at least

$$
\binom{\left\lfloor\frac{n}{2}\right\rfloor}{\left\lfloor\frac{n}{4}\right\rfloor} \approx \frac{2^{n / 2}}{\sqrt{n}}
$$

Key Idea: Flip only certain "special" Lines

Greene-Kleitman Theorem

Theorem [Greene, Kleitman; 1976]

- $A_{k}=$ size of the largest union of k chains of $P\left(A_{0}=0\right)$
- $D_{k}=$ size of the largest union of k antichains of $P\left(D_{0}=0\right)$
- $\lambda_{k}=A_{k}-A_{k-1}$ for all k, and $\lambda:=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$
- $\mu_{k}=D_{k}-D_{k-1}$ for all k, and $\mu:=\left(\mu_{1}, \mu_{2}, \ldots\right)$

Then, λ and μ are partitions, and they are conjugate.

Our Theorems Rewritten

1. Largest union of disjoint chains in Bipartite Cambrian Lattice:

$$
\lambda_{1}-2=\lambda_{2}=\lambda_{3}=\cdots=\lambda_{\left\lfloor\frac{n-1}{2}\right\rfloor}>\lambda_{\left\lfloor\frac{n-1}{2}\right\rfloor+1}
$$

2. Largest antichain in Tamari Lattice:

$$
\mu_{1} \geq \frac{2^{n / 2}}{\sqrt{n}}
$$

Thank You!

