Chains and Antichains in the Bipartite Cambrian and Tamari Lattices

Ben Drucker

Eli Garcia

Aubrey Rumbolt Rose Silver

UCONN REU

POSETS

Partially Ordered Set (Poset): A set equipped with a relation \leq

COMPARING ELEMENTS IN THE POSET

 $\{x, y\} \le \{x, y, z\}$

 $\{x,y\} \nleq \{y,z\}$

POSETS

Partially Ordered Set (Poset): A set equipped with a relation \leq

POSETS

Partially Ordered Set (Poset): A set equipped with a relation \leq for which the following hold:

- 1. *Reflexivity:* $a \le a$
- 2. *Transitivity*: if $a \le b$ and $b \le c$, then $a \le c$
- 3. *Antisymmetry*: if $a \le b$ and $b \le a$, then a = b

TODAY'S TALK

- ► Describe the Bipartite Cambrian Lattice & <u>Tamari Lattice</u>
- Prove interesting properties of these two posets

Note: A lattice is a type of poset

Part 1 The Bipartite Cambrian Lattice

[Reading; 2012]

BIPARTITE POLYGON (n = 6)

- Draw a polygon with n + 2 vertices
- Label vertices odd and even as above

THE ELEMENTS: TRIANGULATIONS

THE ELEMENTS: TRIANGULATIONS

- ► Triangulate the polygon
- ► These triangulations are the elements in our poset!

DEFINING: COMPARABLE ELEMENTS

- ► Two polygons sharing an arrow differ by one **diagonal flip**
- Arrow points towards polygon with the more positive diagonal

BIPARTITE CAMBRIAN LATTICE

[Reading; 2012]

Note: Elements listed higher in the poset have higher-sloped diagonals

CHAINS AND ANTICHAINS

- Chain: A subset in which every pair of elements is comparable
- Chain Size: # elements in the chain

- Antichain: A subset in which every pair of elements is incomparable
- Antichain Size: # elements in the antichain

Research Problem

Question: For all *n*, how many maximum-length chains share only their first and last elements?

Research Problem

Question: For all *n*, how many maximum-length chains share only their first and last elements?

Theorem: The maximum attainable number is $\lfloor \frac{n-1}{2} \rfloor$

ONE KEY IDEA: FOCUS ON A SPECIAL SUBPOSET

5, 53 55 Sa Sy Sa

Part 2 The Tamari Lattice

CREATING THE TAMARI LATTICE

- Draw a polygon with n + 2 vertices
- ► Label vertices in increasing order

Note: The only difference from before is how we order the vertices!

CREATING THE TAMARI LATTICE

- ► Triangulate the polygon
- ► These triangulations are the elements in our poset!

THE TAMARI LATTICE

Note: As before, elements listed higher in the poset have higher-sloped diagonals

RESEARCH RESULTS

Question: For all *n*, what is the size of the largest antichain?

RESEARCH RESULTS

Question: For all *n*, what is the size of the largest antichain? **Theorem:** The largest antichain has size at least

$$\begin{pmatrix} \lfloor \frac{n}{2} \rfloor \\ \lfloor \frac{n}{4} \rfloor \end{pmatrix} \approx \frac{2^{n/2}}{\sqrt{n}}$$

. -

Key Idea: Flip only certain "special" lines

GREENE-KLEITMAN THEOREM

Theorem [Greene, Kleitman; 1976]

- A_k = size of the largest union of *k* chains of *P* ($A_0 = 0$)
- D_k = size of the largest union of k antichains of P ($D_0 = 0$)

•
$$\lambda_k = A_k - A_{k-1}$$
 for all k , and $\lambda := (\lambda_1, \lambda_2, ...)$

• $\mu_k = D_k - D_{k-1}$ for all *k*, and $\mu := (\mu_1, \mu_2, ...)$

Then, λ and μ are partitions, and they are conjugate.

OUR THEOREMS REWRITTEN

1. Largest union of disjoint chains in Bipartite Cambrian Lattice:

$$\lambda_1 - 2 = \lambda_2 = \lambda_3 = \dots = \lambda_{\lfloor \frac{n-1}{2} \rfloor} > \lambda_{\lfloor \frac{n-1}{2} \rfloor + 1}$$

2. Largest antichain in Tamari Lattice:

$$\mu_1 \ge \frac{2^{n/2}}{\sqrt{n}}$$

Thank You!