
TRIANGULATIONS OF CAMBRIAN LATTICES OF TYPE A
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Abstract. Dillworth’s Theorem states that the maximal size of an antichain is equal to the

minimal number of chains needed to cover the partially ordered set. We study the Greene-Kleitman

partition of c-Cambrian lattices of type A. We partially compute the Greene-Kleitman partition of

the Bipartite Cambrian Lattice. Professor Gordana Todorov is my consultant on the project.
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1. Introduction

Dillworth’s Theorem is one of the most groundbreaking discoveries in the field of combinatorics as

it describes a universal property for all partially ordered sets (posets). The theorem states that the

width of the largest antichain in a poset is equal to the minimum number of chains needed to cover

the poset [2]. For now, if we arbitrarily let µ(π) represent the size of the largest antichain in the

poset π, and |λ(π)| be the minimum number of chains needed to cover a poset π, then

|λ(π)| = µ(π).

The dual of Dillworth’s theorem proven by Mirsky in [6] states that the size of the largest chain

is equal to the minimum number of antichains needed to cover the poset (i.e., λ(π) = |µ(π)|).
The Greene-Kleitman Theorem provides a continuous transformation between the main and dual

versions of Dilworth’s theorem for a poset π [4]. Greene and Kleitman defined two invariants,

λ = (λ1, λ2, · · ·λn) and µ = (µ1, µ2, · · ·µm), to describe weakly decreasing chain and antichain
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Figure 1. Bipartite Cambrian Lattice for n = 4

coverings respectively; see the definition in 3.2. The Greene-Kleitman theorem shows that these

invariants are actually conjugate partitions and can be written as

λj = |{k|µk ≥ j}|,

µj = |{k|λk ≥ j}|.

This conjugacy is clear to see if λ and µ are represented with a Young Diagrams; see Figure 4 and

Example 3.7. These results in total were very significant to the field of combinatorics as now we have

tools to analyze and understand all partially ordered sets in detail.

One poset which is particularly interesting is the Tamari Lattice. Introduced by Tamari in [1], the

most famous example of the Tamari Lattice is a partially ordered set where the elements represent

binary bracketing of n objects. But the Tamari lattice has other realizations. This is because

the number of elements for each n is the n-th Catalan number, and the Catalan number has over

one hundred realizations [10]. The most relevant realization for this paper is of triangulations of

(n+ 2)-gons that look as in Figure 5.

In the past, some people have tried to apply the Greene-Kleitman invariant λ to the Tamari Lattice.

In Early’s PhD thesis, he has found the first three parts of the invariant for the Tamari Lattice [3].

Lim and Zhang followed suite and found the fourth and fifth parts of the Greene-Kleitman invariant

for the Tamari Lattice [7].

Reading [9] generalized these Tamari triangulations of polygons to adjust for any (n+ 2)-gon of

choice (i.e., triangulations which happen if one adjusts the positions of vertices in the polygon). He

calls these new posets Cambrian Lattice. This paper is interested in both the Tamari Lattice as well

as one other of these Cambrian lattices called the Bipartite Cambrian Lattice. Here, the polygon has

vertices as described in 3.14. For an example of the Bipartite Cambrian Lattice, see Figure 1.

The problem of this paper is to find as many parts of the Greene-Kleitman invariant as possible

for both the Bipartite Cambrian Lattice and Tamari Lattice. This paper also seeks to find an

understanding of these concepts from a representation-theoretic perspective as the triangulations of

the polygons represents quivers of type A. Applications to this result would be contributing tools

and techniques to other mathematicians for finding parts of the Greene-Kleitman invariant for the

same or other posets. Also, another application is to further bridge the connection between the fields

of algebraic combinatorics and representation theory and develop parallel meaning of objects in one
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field to the other. In this paper, we introduce the following theorem which finds the first bn−12 c parts

of the Greene-Kleitman invariant.

Theorem 1.1 (Bipartite Theorem). Let n ≥ 4. In the s1s3 . . . s2s4 . . . -Cambrian lattice and in the

s2s4 . . . s1s3 . . . -Cambrian lattice, we have

λ1 − 2 = λ2 = λ3 = . . . = λbn−1
2 c

> λbn−1
2 c+1.

The rest of the paper is organized as follows. In Section 2, we outline the problem being examined

in this paper. In Section 3, we review some necessary mathematics needed to understand the problem

statement in its entirety. In Section 4, we define commutation classes of c-sortable words and

maximum length chains. Finally, in Section 5, we prove Theorem 1.1.

2. Problem Statement

The first goal of this paper is to find a lowerbound for the size of the largest antichain for the

Tamari lattice. In other words, what is the minimum size of µ1 for the Tamari Lattice for all n?

In the past, researchers such as Early and Zhang [7] have found the first five parts of λ and have

conjectured about finding more parts; see Figure 2. However, the width of the poset is not something

which is known. This has been a challenging problem to solve, and the only well-known techniques

for solving the largest antichain come from trying to find the largest antichain in the right-weak

order of permutations.

A second goal of this paper is to find as many parts of λ for the Bipartite Cambrian Lattice for all

n as possible. Finding parts of λ has not yet been extended into the Bipartite Cambrian Lattice, so

this research would glean information in new mathematical territory. In order to find the parts of λ,

it must be determined what these lattices look like for all n, something which has not been done

before. It would be nice to have results similar to the ones in Figure 2.

The last goal is to study the Greene-Kleitman partition of Tamari lattices and other Cambrian

lattices of type A, but from the approach from representation theory. In particular, there might be a

connection between a special subposet in the Bipartite Cambrian Lattice and the Coxeter group.

The subposet represents elements which might be in the longest chains of the Bipartite Lattice

used to find the first several parts of λ, and the Coxeter group helps to uncover this subposet. For

example, this subposet would be similar to the subposet represented by bold lines in Figure 2. If this

connection is made, this might aid in understanding how the subposet works and if it can give any

information to the largest parts of λ.

3. Necessary Mathematics

3.1. Greene-Kleitman Theorem. In this section, we review the necessary mathematics needed

to understand the Greene-Kleitman Theorem which is directly related to the research problem.

Definition 3.1. A partially ordered set S is a set equipped with a binary relation <. For x, y ∈ S,

we use x < y to signify that x precedes y.

A chain in S is a sequence of elements x1, x2, . . . such that x1 < x2 < · · · . An antichain in S is a

subset A of S of elements such that every two distinct x, y ∈ A are incomparable (i.e., neither x < y

nor y < x).
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Figure 2. Tamari Lattice n = 5 by Early [3] used to compute parts of λ. This
paper will attempt to find parts of λ for the Bipartite Cambrian Lattice in a similar

way.

Definition 3.2. A partition of n ∈ N is a sequence λ = (λ1, λ2, · · · , λl) of integers λk ≥ 0 where

the λk are weakly decreasing, that is,

λ1 ≥ λ2 ≥ · · · ≥ λl

and λ1 + λ2 + · · ·+ λl = n. The Greene-Kleitman Invariants are partitions, where n is the number of

elements in the poset. The terms λ1, λ2, · · · , λl are called parts. If λ is a partition of n, we write

|λ| = n.

With these definitions, we now introduce the Greene-Kleitman Theorem [4]:

Theorem 3.3 (Green-Kleitman Theorem). Let Aj denote the maximum size of j disjoint chains.

Let Bj denote the maximum size of j disjoint antichains. Then Aj is equal to the number of k for

which Bk ≥ j, and Bj is equal to the number of k for which Ak ≥ j.

Using the notation from Theorem 3.3, let λk = Ak −Ak−1 where A0 = 0, and let µk = Bk −Bk−1.

We define the Greene-Kleitman invariants λ = (λ1, λ2, · · · ) and µ = (µ1, µ2, · · · ).
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Figure 3. Partially ordered set P

Example 3.4. The poset in Figure 3 has its largest union of one chain (its largest chain) from

{a, b, d, f} and its largest union of two disjoint chains from {a, b, d, f} and {c, e}. Therefore, A1 = 4

and A2 = 6. Computing λ, we have λ = (4− 0, 6− 4) = (4, 2).

This poset has its largest union of one antichain (its largest antichain) from {b, c}, its largest union of

two disjoint antichains from {b, c} and {d, e}, its largest union of three disjoint antichains from {b, c},
{d, e}, and {f}, and finally its largest union of four disjoint antichains from {b, c}, {d, e}, {f}, and {a}.
Therefore, B1 = 2, B2 = 4, B3 = 5, and B4 = 6. Therefore, µ = (2− 0, 4− 2, 5− 4, 6− 5) = (2, 2, 1, 1)

Remark 3.5. In Example 3.4, it so happens that chains were chosen such that the set of the largest

union of k chains was a subset of the set of the largest union of k+ 1 chains. This is also true for the

antichains in the example. However, this is not always the case for all posets. Likewise, there is not

one unique choice of chains and antichains which compose the largest union. For example, one could

choose to compose A1 from the elements {a, d, e, f}.

Definition 3.6. The Young Diagram of a partition λ is an array of boxes having k left-justified

rows with row i, where k is the number of parts of λ, containing λi boxes for 1 ≤ i ≤ k.

The conjugate partition of λ is the partition µ whose shape is obtained from the Young Diagram

of λ by interchanging rows and columns. Equivalently, the Young Diagram of µ is the reflection of

the Young Diagram of λ about its main diagonal y = −x.

We now introduce an example which is helpful in understanding partially ordered sets, λ, µ, and

their relationship to each other:

• • • •

• •

• •

• •

•

•

Figure 4. Young diagrams for λ = {4, 2} and its conjugate partition µ = {2, 2, 1, 1}

Example 3.7. Suppose we have λ = (4, 2) and its conjugate µ = (2, 2, 1, 1) given by a poset such

as in Figure 3. In Figure 4, we can represent λ and µ respectively with a Young Diagram. We
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can use the Young Diagram to check the different parts of λ and µ. As an example, we see that

λ2 = 3 = |{k|µk ≥ j}|.

3.2. Triangulations of polygons. Studying the values of Aj and Bj from Theorem 3.3 for specific

posets is an especially interesting problem. In this section, we define two posets of special interest:

the Tamari Lattice and the Bipartite Cambrian Lattice.

Definition 3.8. Take Q to be a convex (n+ 2)-gon with vertices labeled 0, 1, · · · , n, n+ 1. We put

the 0 and n+ 1 vertices horizontally across from each other and connect them with a line. We put the

remaining vertices between them, below the line, carving out a boat-like shape. We add the condition

that these new vertices increase in value from left to right. This is the outline of the Tamari Polygon.

A triangulation of a polygon Q is a tiling of Q by triangles whose vertices are contained in the

vertex set of Q [9].

0

1

2

3
4

5

6

7

8

Figure 5. One Tamari Polygon for n = 7

Example 3.9. In Figure 5, we can see one example of a triangulation of a Tamari Polygon with

n = 7. As we will later learn, these triangulations will make up the elements for the Tamari Lattice.

Definition 3.10. Let X denote the set of triangulations of an n-gon with vertex labels 1, 2, . . . , n.

For any x ∈ X, a diagonal flip takes an edge (i, j) in the triangulation x, removes the edge to reveal a

quadrilateral, and rearranges the edge to be a new edge (k, l) where k and l are the opposite corners

of the quadrilateral. We call the edge involved in the diagonal flip the “flipped edge”. A diagonal flip

should preserve the fact that x is a triangulation. Two triangulations x and y which differ by one

diagonal flip retain x < y if the slope of the flipped edge in y is more positive than the slope of the

flipped edge in x. Two triangulations x, z satisfy x < z if z can be reached from x by a sequence of

edge flips in an increasing order.

Example 3.11. In Figure 6, we see that the edge (3, 6) has a negative slope, and gets ”flipped” to

(2, 7) which has a positive slope.

Definition 3.12. The elements of the Tamari Lattice for a given n are all of the possible triangulations

of this Tamari Polygon. A relationship between elements in the Tamari Lattice is given by diagonal

flips.

Definition 3.13. A Hasse Diagram is a directed graph used to diagram posets. The nodes of the

Hasse Diagram represent elements of the posets. An arrow exists between the elements x and y if
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Figure 6. An example of a Diagonal Flip

x ≤ y and the arrow points from x to y (See Figure 1 as an Example of a Hasse Diagram where the

arrows are implied).

Definition 3.14. The Bipartite Cambrian Polygon is similar to the Tamari Polygon, but with a

slight twist. Take Q to be a convex (n+ 2)-gon with vertices labeled 0, 1, · · · , n, n+ 1. As before, we

put the 0 and n+ 1 vertices horizontally across from each other and connect them with a line. Now,

we place the even vertices above the horizontal, and the odd vertices below the horizontal. We keep

the condition that these new vertices increase in value when scanned from left to right. An example

of these polygons can be seen in Figure 6.

Definition 3.15. The Bipartite Cambrian Lattice is the poset whose elements are the Bipartite

Cambrian Polygons. A relationship between elements in the Bipartite Cambrian Lattice is given by

diagonal flips. See Figure 1 for an example.

4. Commutation class of c-sortable words and maximum-length chains

4.1. Necessary mathematics for Cambrian Lattices. In this section, we introduce some defini-

tions relevant for studying Cambrian lattices.

Definition 4.1. Sn is the symmetric group of permutations of length n. w0 is the reverse identity

permutation in one-line notation. For example, in S4, w0 = 4321.

Definition 4.2. A type An Coxeter group W is generated by S := {s1, . . . , sn} ∈W where s2k = 1

for all k ∈ [n]. We have that sksk+1sk = sk+1sksk+1 (called a long braid relation) and sksj = sjsk if

‖k − j‖ ≥ 2 (called a short braid relation). The s1, . . . , sn are called simple reflections.

Definition 4.3. Every element π ∈ W can be written (non-uniquely) as a word in the alphabet

of S, that is, as a product of the simple reflections. π = si1si2 . . . sil , sik ∈ S = {s1, . . . , sn}. If l

is minimal among all words for π, then l is called the length of π, and the word si1si2 . . . sil , sik is

called a reduced word for π.

Remark 4.4. Every element π ∈W can be written (non-uniquely) as a word in the alphabet of S,

that is, as a product of the simple reflections. π = si1si2 . . . sil , sik ∈ S = {s1, . . . , sn}.

Definition 4.5. A coxeter element is a permutation of c ∈ Sn+1 which can be written as a

product of {s1, . . . sn}. Given a coxeter element c ∈ Sn+1, fix a reduced word c = a1a2 . . . an where

ak ∈ {s1, . . . , sn}. Let c∞ = ccc = a1a2 . . . ana1a2 . . . ana1a2 . . . an . . .. Given π ∈ Sn+1, the c-sorting
7



word for π (The (ana1a2 . . . an)-sorting word) is the subword of cinfty which is lexicographically first

(as a sequence of positions in c∞) and is a reduced word for π.

Definition 4.6. Given a coxeter element c ∈ Sn+1, fix a reduced word c = a1a2 . . . an where

ak ∈ {s1, . . . , sn}. Let c∞ = ccc = a1a2 . . . ana1a2 . . . ana1a2 . . . an . . .. Given π ∈ Sn+1, the c-sorting

word for π (The (ana1a2 . . . an)-sorting word) is the subword of cinfty which is lexicographically first

(as a sequence of positions in c∞) and is a reduced word for π.

Definition 4.7. The c-Cambrian Lattice is the lattice created using all of the short braids on the

coxeter element c.

4.2. Commutation class of the c-sorting word of the longest element. In this section, we

review the fact that the maximum-length chains in a c-Cambrian lattice correspond to the reduced

word in the commutation class of the c-sorting word for w0.

Lemma 4.8 ([8, Corollary 4.4]). The longest permutation w0 of the symmetric group is is c-sortable

for any c.

Proposition 4.9 ([5, Proposition 2.5]). The c-singletons constitute a distributive sublattice of the

(right) weak order on Sn.

The following proposition follows from [8] and [5]:

Proposition 4.10. Let a = a1a2 . . . be a reduced word for a Coxeter element c. Let w0(a) be the

a-sorting word of the longest element w0 in Sn. Then the reduced words in the commutation class of

w0(a) correspond to the maximum-length chains in the c-Cambrian lattice via the following bijection:

Given a reduced word u1u2 . . . u(n
2)

of w0 in the commutation class of w0(a), the word u1u2 . . . u(n
2)

is sent to the maximum-length chain

id
u1−→ u1

u2−→ u1u2
u3−→ u1u2u3 . . .

u
(n
2)−−−→ w0

4.3. The bipartite c-sorting words for the longest element. In this section, we introduce the

c-sorting words for the longest element in the Bipartite Cambrian Lattice. From here, it immediately

follows using Proposition 4.10 that the commutation class of the c-sorting word can be used to find

the maximum-length chains in the bipartite cambrian lattice.

Lemma 4.11. Consider permutations in Sn+1.

(1) Let c = s1s3 . . . s2s4 . . . be one of the bipartite Coxeter elements. The word w0(c) is the

c-sorting word of w0.

(2) Similarly, if c = s2s4 . . . s1s3 . . . is the other bipartite Coxeter element, the word w0(c) is the

c-sorting word of w0.

Proof. We explain part (1) of the lemma.

First, we show that the word s1s3s5 . . . s2s4s6... is equal to w0.

We consider the result of applying this element to the identity permutation by examining the

“trajectory” of an even number 2 ≤ k ≤ n + 1. We refer to right-multiplication by s1s3 · · · as an

odd move and refer to right-multiplication by s2s4 · · · as an even move. After either an odd or even

move, k moves one space to the left until it reaches the leftmost location:
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k
k

· · ·
k

After these k − 1 moves, we apply an even move, which does not affect k. Then we apply odd and

even moves until k reaches the (n+ 2− k)th location.

k
k
· · ·

k

For an example, set k = 4 and n = 7. The trajectory looks like:

1 2 3 4 5 6 7 8
4

4
4
4

4
4

4
8 7 6 5 4 3 2 1

Odd elements preform a similar maneuver, where an odd k makes its way to the rightmost location

before turning around and moving to the (n+ 2− k)th location. Thus after a total of n+ 1 odd or

even moves, we obtain the reverse identity permutation.

The number of letters in this word is exactly the inversion number of w0 so it is a reduced word for w0.

And it follows from the definition of c-sorting word that this word is the (s1s3s5 . . . s2s4s6 . . .)-sorting

word.

�

Proposition 4.12. Let c = a1 . . . an be a reduced word for a bipartite Coxeter element. In the

c-Cambrian lattice, the maximum-length chains correspond to the reduced word in the commutation

class of the word given in Lemma 4.11.

Proof. This follows directly from Lemma 4.11 and Proposition 4.10. �

5. Largest collection of maximum-length chains which are disjoint

In this section, we construct the largest collection of maximum-length chains which are disjoint

except for the identity permutation and reverse identity permutation, w0. To simplify the discussion

we begin with several definitions.

Definition 5.1. We redefine the simple reflections sk to be called letters. A letter is odd if k is odd,

and even if k is even. The set of letters Lm contains the letters s1, s2, · · · , sm−1, sm
9



Definition 5.2. A word is a string of letters. The set of words that contain only odd (resp. even)

letters, with each letter only appearing once, is denoted by O (resp. E).

For example, w1 = s3s1s5 ∈ O and w2 = s2s4s8 ∈ E.

A k-letter prefix is a word which contains only the first k letters of another word.

For example, the 3-letter prefix of the word s1s6s4s2s7, written as P3(s1s6s4s2s7), is s1s6s4.

Definition 5.3. Define the concatenation w1 ·w2 of two words w1 and w2 to be the word consisting

of w1 followed by w2. For example, if w1 = s1s3s5 and w2 = s2s4s6, then w1 · w2 = s1s3s5s2s4s6.

Definition 5.4. A cyclic shift is an action on a word completed by taking the first letter in a word

and moving it towards the end of the word. For example, a cyclic shift on the word s3s1s5 is s1s5s3.

Definition 5.5. For any word w, the garble of w is the set of all cyclic shifts of a w.

For example, the garble of s1s3s5s7 is {s1s3s5s7, s3s5s7s1, s5s7s1s3, s7s1s3s5}.

Although it is not required in the definition, whenever we refer to the garble of a word w in the proof

of Theorem 1.1, we will only refer to words which are either w = s1s3s5 · · · ∈ O or w = s2s4s6 · · · ∈ E.

Definition 5.6. Two words w1 and w2 are considered to be vertex-disjoint if |w1| = |w2| and for all

1 ≤ k < |w1|, the prefix Pk(w1) consists of a different multiset of letters than does the prefix Pk(w2).

Note that only proper prefixes are considered (i.e., not k = |w1|). For Example, w1 = s3s1s2s3s4s5 is

not vertex-disjoint with w2 = s1s3s3s2s4s5 because for k = 4, the multiset P4(w1), ({s3, s1, s2, s3}),
is the same as the multiset P4(w2), ({s1, s3, s3, s2}). However, w1 = s3s1s2s3s4s5 is vertex-disjoint

with w3 = s5s4s3s2s1s3.

Remark 5.7. For a word w, if each letter in w appears only once (i.e., no repeats), then all words

in the garble of w are pairwise vertex-disjoint. We later use the fact that for any w ∈ O ∪ E, the

garble of w consists of vertex-disjoint words.

Definition 5.8. For two words w1 and w2, the boundary-crossing w1 ⇔ w2 is defined to be the

concatenation of w1 with w2, except with the final letter of w1 swapped with the first letter of w2.

However, a boundary-crossing is only permitted if the two swapped letters have values which differ

by at least 2 (i.e., the letters are si and sj satisfying |i− j| ≥ 2).

For example, s1s3s5s7 ⇔ s2s4s6s8 is the word s1s3s5s2s7s4s6s8.

Lemma 5.9. Consider the words x, x′, y, y′ where x and x′ are vertex-disjoint and contain the same

multisets of letters, and y and y′ are vertex-disjoint and contain the same multisets of letters. Assume

that x and y can perform a boundary-crossing, and x′ and y′ can perform a boundary-crossing. Then,

the word x⇔ y is vertex-disjoint with x′ ⇔ y′.

Proof. Let m = |x| = |x′|. For 1 ≤ r < m, consider the prefix Pr(x⇔ y) and the prefix Pr(x′ ⇔ y′).

Since r < m, we have Pr(x ⇔ y) = Pr(x) and Pr(x′ ⇔ y′) = Pr(x′). Since x and x′ are vertex-

disjoint, we know that the words x ⇔ y and x′ ⇔ y′ are also vertex-disjoint up to their m − 1-th

letters.

It also follows that Pm(x ⇔ y) and Pm(x′ ⇔ y′) are vertex disjoint. This is because the prefix

Pm(x ⇔ y) contains the first letter of y, and the prefix Pm(x′ ⇔ y′) contains the first letter of y′.
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These two letters differ by virtue of y and y′ being vertex-disjoint, so it follows that the prefixes

Pm(x⇔ y) and Pm(x′ ⇔ y′) have different multisets of letters.

Lastly, we consider prefixes of length m < r < |x ⇔ y|. In this case, both Pr(x ⇔ y) and

Pr(x′ ⇔ y′) contain all of the letters from x and all of the letters from x′, respectively. The prefixes

Pr(x ⇔ y) and Pr(x′ ⇔ y′) also contain the first r −m letters of y and y′, respectively. By the

assumption that y and y′ are vertex disjoint, it follows that the prefixes Pr(x⇔ y) and Pr(x′ ⇔ y′)

contain different sets of letters than one-another. We have shown that for all 1 ≤ r < |x⇔ y|, the

prefix Pr(x ⇔ y) consists of a different multiset of letters than does the prefix Pr(x′ ⇔ y′), thus

completing the proof that x⇔ y and x′ ⇔ y′ are vertex-disjoint. �

Example 5.10. Consider x = s1s3s5, x′ = s3s5s1, y = s2s4s6, y′ = s4s6s2. The previous lemma

states that x⇔ y = s1s3s2s5s4s6 is vertex disjoint with x′ ⇔ y′ = s3s5s4s1s6s2.

Definition 5.11. We define the commutation class on chains to be all of the chains that can be

obtained by repeatedly swapping adjacent entries that are not adjacently valued. For example, the

chains s1s3s5s2s4s6 and s3s1s2s5s4s6 are in the same commutation class because one chain is the

same as the other but with s1, s3 swapped, and s5, s2 swapped.

It is the case that for each commutation class, we can take a base element and use it to derive

every chain in the class.

Definition 5.12. For a positive integer n, we define the Base Chain Bn to be a chain that is

constructed in the following way: Bn is constructed with two repeating words. The first word x ∈ O
is defined to be all of the odd letters in Ln−1 in increasing order such that each odd letter appears

once. The second word y ∈ E strings together all of the even letters in Ln−1 in increasing order such

that each even letter appears once. Bn is the concatenation of these words xyxy · · · until the length

of Bn is
(
n
2

)
:

Bn = s1s3s5 · · · s2s4s6 · · · s1s3s5 · · ·︸ ︷︷ ︸
(n
2)

We will use this uniquely-constructed Base Chain ostensibly in the following section.

5.1. The Swapping Technique. Recall that our goal is to find the largest collection of maximum-

length chains which are disjoint except for the identity and the reverse permutation, w0. In this

section, we will first solve an intermediate problem. In particular, our next goal will be to prove the

following result: the maximum number of pairwise vertex-disjoint chains that can be found in the

same commutation class as Bn is bn−12 c. We will later use this to prove Theorem 1.1. The Swapping

Technique is a method introduced in this section which will aid in constructing these vertex-disjoint

chains. The technique yields a construction of bn−12 c chains for all n using the chain Bn, as denoted

above.

We will now explain how the Swapping Technique works and follow with an example:

Step 1

The Swapping Technique first requires we start with Bn. We break apart Bn in between each word

x and y. Then, we list all of the words in the same garble as x underneath x in a column, and do the

same for y. As an example, let’s consider the chain B9 (which is constructed from x = s1s3s5s7 and
11



y = s2s4s6s8).

s1s3s5s7s2s4s6s8s1s3s5s7s2s4s6s8s1s3s5s7s2s4s6s8s1s3s5s7s2s4s6s8s1s3s5s7

Here’s what the breaking apart and listing steps look like for n = 9:

s1s3s5s7 s8s2s4s6 s1s3s5s7 s8s2s4s6 s1s3s5s7 s8s2s4s6 s1s3s5s7 s8s2s4s6 s1s3s5s7
s7s1s3s5 s6s8s2s4 s7s1s3s5 s6s8s2s4 s7s1s3s5 s6s8s2s4 s7s1s3s5 s6s8s2s4 s7s1s3s5
s5s7s1s3 s4s6s8s2 s5s7s1s3 s4s6s8s2 s5s7s1s3 s4s6s8s2 s5s7s1s3 s4s6s8s2 s5s7s1s3
s3s5s7s1 s2s4s6s8 s3s5s7s1 s2s4s6s8 s3s5s7s1 s2s4s6s8 s3s5s7s1 s2s4s6s8 s3s5s7s1

By doing this process (for odd n), we have bn−12 c words in each row of each column, and
(
n
2

)
letters in each full row. (For even n, we have at least bn−12 c words in each row of each column. This

is because the even column will have n−1
2 words in each row, but the odd column will have n−1

2 + 1

words in each row.) This is exactly the number of letters we need to create bn−12 c chains all with

length
(
n
2

)
. The rest of the Swapping Technique involves strategically assigning all words into one

of bn−12 c chains such that every chain will have one word from each column. We build all chains

simultaneously from left to right as follows:

Step 2

To begin constructing each chain, we start by considering just the first column of the Bn garbles.

We trivially assign the first word in the column to be in chain c1, the second word in the column

to be in chain c2, and so on until the last word in the column is in chain cbn−1
2 c

. Next, we decide

which words from the second column will be in each chain c1, . . . , cbn−1
2 c

with an added constraint:

We restrict which words from the second column are allowed to be in a chain with words from the

first column. This is done in the following way: A word from the second column is allowed to be in

the same chain as a word in the first column if those two words can perform a boundary crossing. In

other words, if the indices of the letters involved in the boundary-crossing differ by at least 2, then

these two words are allowed to be in the same chain. The following lemma proves that it is feasible

to build c1, . . . , cbn−1
2 c

with this added constraint.

Lemma 5.13. It is possible to construct bn−12 c chains c1, . . . , cbn−1
2 c

such that for each chain, every

word chosen to be in the chain from the i-th column can perform a boundary crossing with its

predecessor word from the i− 1-th column.
12



Proof. We prove Lemma 5.13 by explicitly constructing the chains c1, . . . , cbn−1
2 c

using the Pairing

Algorithm:

Algorithm 1: Pairing Algorithm

Result: This algorithm is used in the Swapping Technique to determine which words from

each x-garble column and y-garble column are assigned to the same chain.

if n is odd then

if bn−12 c odd then

Case A: Put a word in column i in the same chain as a word from column i− 1 if the

letters across the boundaries (the last letter of the word in column i− 1 and the first

letter of the word in column i) have values which are equal mod(bn−12 c).
else

Case B: Consider the letters involved in the boundary crossings of both columns i and

i− 1. A word from either column is in set X if its letter involved in the boundary

crossing is in the set {s1, . . ., sbn−1
2 c
}. A word from either column is in set Y

otherwise. We pair a word in set X with a word in set Y if these words have letters

involved in the boundary crossing whose values are equal mod(bn−12 c+ 1).

Note: If we were to apply Case A in this scenario, then we realize that letters equal

mod(bn−12 c) have the same parity. Since we are constructing chains using words from

columns with different parity, Case A cannot be applied.

end

else
Remove the word in each column of x-garbles which starts with s1 and ends with sn−1.

if b
(
n−1
2

)
c odd then

Repeat Case A

else
Repeat Case B

end

end

This algorithm makes it such that every pair of words assigned to the same chain can perform a

boundary crossing by assigning every last letter of a word in the chain to a permanent partner letter,

which comes from the first letter of a word in the chain.

�

With this restriction, we find a way to put each word from the second column into each of the

bn−12 c chains thanks to Lemma 5.13. We repeat this process for the rest of the columns, where a

word in the i-th column is allowed to be in a chain with a word from the i− 1-th column if these two

words can perform a boundary crossing. If we follow this process and use the Pairing Algorithm for

n = 9, we end up with four chains total, where words sharing the same color are in the same chain:

Step 3
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There is one last step to the Swapping Technique. We can now take each chain in c1 · · · cbn−1
2 c

and

perform boundary crossings across all odd and even words. By doing so, we transform our chains

into our desired bn−12 c chains, C1 · · ·Cbn−1
2 c

. For n = 9, the chains C1 · · ·C4 look like such:

C1 = s1s3s5s4s7s6s8s5s2s7s1s8s3s2s4s1s6s3s5s4s7s6s8s5s2s7s1s8s3s2s4s1s6s3s5s7

C2 = s7s1s3s2s5s4s6s3s8s5s7s6s1s8s2s7s4s1s3s2s5s4s6s3s8s5s7s6s1s8s2s7s4s1s3s5

C3 = s5s7s1s8s3s2s4s1s6s3s5s4s7s6s8s5s2s7s1s8s3s2s4s1s6s3s5s4s7s6s8s5s2s7s1s3

C4 = s3s5s7s6s1s8s2s4s7s1s3s5s2s4s6s3s8s5s7s6s1s8s2s4s7s1s3s5s2s4s6s3s8s5s7s1

Lemma 5.14. The Swapping Technique gives us bn−12 c chains that are in the same commutation

class as Bn and are all vertex disjoint.

Proof. We first realize that words in the same garble are in the same commutation class. This is

because a cyclic shift action is equivalent to swapping the first letter with all of its predecessors

until it reaches the end of the line. We also recognize that the boundary crossing moves just swaps

elements. Therefore, since the words created from the Swapping Technique are just constructed from

garbles from a concatenation of words in Bn and from boundary crossings, we know from Definition

5.11 that these new words are in the same commutation class as Bn.

It remains to be proven that these chains are all pairwise vertex-disjoint. In order to show this, we

can apply Lemma 5.9 repeatedly.

We know from Lemma 5.9 that x ⇔ y and x′ ⇔ y′ are vertex-disjoint. It then follows that

(x ⇔ y) ⇔ x and (x′ ⇔ y′) ⇔ x′ are vertex-disjoint. It also follows that ((x ⇔ y) ⇔ x) ⇔ y) and

((x′ ⇔ y′)⇔ x′)⇔ y′) are vertex-disjoint. We can extend this logic to say that x⇔ y ⇔ x⇔ y · · ·
and x′ ⇔ y′ ⇔ x′ ⇔ y′ · · · are vertex-disjoint. Since any pair of chains from the Swapping Technique

looks like x⇔ y ⇔ x⇔ y · · · and x′ ⇔ y′ ⇔ x′ ⇔ y′ · · · , then we are done.

�

Lemma 5.15. If a set of chains in the commutation class of Bn consists of more than bn−12 c
elements, then at least two of the chains have a common letter.

Proof. Let j = bn−12 c and let k =
(
n
2

)
be the number of letters in Bn. Assume toward contradiction

that we have m > j unique chains in the same commutation class as Bn (each k letters long),

and assume that they are all pairwise vertex-disjoint. Since these m chains are all in the same

commutation class, then we know that they all must contain the same collection of letters, just

ordered differently. Therefore, if they are all pairwise vertex-disjoint, then it must be true that they

all must end with different letters (this is because if two chains both ended with the same letter,

then the multisets of their (k − 1)-letter prefixes would be equal, and therefore they would not be

pairwise vertex-disjoint). To have a proof by contradiction, we will show that for even and odd n, all

chains in the commutation class can only end with one of j different letters.

First, we prove a contradiction by assuming n to be even. In this case, we recall that the last

bn−12 c letters of Bn are s2, s4, s6, . . . sn−2. If we were to apply swapping to Bn, all of these letters

would be allowed to occupy the last spot in the chain of letters since they are all allowed to swap

with each other. This means we are allowed to have at least bn−12 c chains which are all pairwise

vertex-disjoint. Now, suppose we try to make s1 – a letter not in the last bn−12 c letters of Bn – the

last letter. We know that in the process of creating more chains in the same commutation class as
14



Bn, s1 and s2 will never be allowed to swap places. But, s2 comes after s1 in the chain. This means

it is impossible for s1 to be allowed as the last letter in a chain in the same commutation class as Bn.

We can say that s1 is ”blocked” by s2. We can generalize this for all si for odd i. These si will never

be able to take the last spot in the chain because they will be ”blocked” by some si+1 which appears

after si in the chain.

Finally, we prove a contradiction by assuming n to be odd. In this case, the last n−1
2 letters will be

s1, s3, s5, . . . sn−2. By similar arguments made above, these n−1
2 letters are the only letters allowed

to be in the last position of the chain. And since n−1
2 = bn−12 c for odd n, then this completes the

proof. �

We now describe the argument above for arbitrary values of n, and formalize it in the following

theorem.

Theorem 5.16. For letters in Ln−1 (As defined in Definition 5.1), we can always find exactly bn−12 c
chains in the equivalence class of Bn that are vertex-disjoint.

Proof. We can construct bn−12 c chains using the Swapping Technique. The rest of the proof follows

directly from Lemma 5.14, and Lemma 5.15.

�

Remark 5.17. The Swapping Technique can be repeated but with a ”reverse” base chain that starts

with even letters. It follows that the analysis of the Swapping Technique using the base chain directly

applies to the reverse base chain. This remark is important for the proof of Theorem 1.1.

5.2. Proof of Theorem 1.1. In this subsection, we put the pieces together from Section 4 and

Section 5 to prove Theorem 1.1.

The chain Bn is actually equal to one of the bipartite coxeter element in Lemma 4.4 (the reverse

base chain is equal to the other coxeter element). The word w0(Bn) is the Bn-sorting word of w0 by

construction. We see that the chains we get from Bn using the Swapping Technique are actually

the reduced words in the commutation class of Bn. This is because Bn was constructed by using

garbles and boundary swaps, which are all vertex-disjoint. If two words have the same letters, then

vertex-disjoint words translates to the words being in the same commutation class. By Proposition

4.5, they are thus the maximum length chains of the Bipartite Cambrian Lattice.

It can be seen that these maximum length chains in the Bipartite Cambrian Lattice share only

their first and last element, the identity and w0. This is because maximum length chains that satisfy

the vertex-disjoint definition only share their first and last elements by construction. Since they all

share their first and last element, we just let the first chain claim the first and last element. The size

of the other chains are thus equal and two less than the first chain. Thus, Theorem 5.16 therefore

implies Theorem 1.1.
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