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The Interior Point Problem

Isn’t this trivial?

Just return any sample X..
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Interior Point Problem:

e Gilven ni.i.d. samples X, ...,X, ~ P, return a pointy s.t.

inf support(P) <y < supsupport(P).
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Private Interior Point Problem:

e Glven n1i.1.d. samples X, ..., X, ~ P, privately return a point y s.t.

inf support(P) <y < supsupport(P).



Differential Privacy (DMNS ’06)

Corporate needsiyou to finditheldifferences
betweenithis pi'ctunge andithisipicture: lihey’re the samelpictuie®
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An algorithm A is (e, 0)-Differentially Private if
e for all pairs of “neighboring” datasets D, D’

o for all events £ C Range(A)

Pr[A(D) € E] < e°Pr[A(D)) € E] + 6



A Surprising Impossibility Result (BNSV ’15)

This is bad news for computing:

median, mean, half spaces, etc.
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Theorem (BNSV’15). Any (e, 6)-differentially private algorithm that

solves the interior point problem must use at least n samples, where

n = Q(og* | domain of P|)

Immediate Corollary: When P is continuous, the problem is intractable!



Related Work: Bypassing the Impossibility Result

[KV18]

[ DL09, TVGZ20,
BAM?20, AD20]

[HRS20]

Distributional Assumption

Assume data is Gaussian

Assume probability density is lower
bounded at every point in some fixed-sized
interval around the median

Assume a smoothness property everywhere

Takeaway: Bun et al's lower bound seems to apply only to

very “unusual” distributions.



This Work

Theorem 1 (Informal). Assume P satisfies C-bounded normalized variance. Then there is
an (e, 0)-DP algorithm that:

1. returns an interior point of P and

2. uses n = poly(Ce'log 6 !) samples.

We define this distributional assumption next!




What is a C-bounded distribution?

Examples include:

Uniform, Gaussian, Exponential,

Laplace, Binomial, Poisson, etc.

Definition:

e A distribution P with mean u satisfies C-bounded normalized
variance if

VExorl IX=p 1 < C- By pl|X — pl]
S e S —

standard deviation expected absolute deviation

Intuition:

e Distributions with O(1)-bounded normalized variance are those for which the
standard deviation serves as a constant-factor proxy for the expected absolute

deviation E[ | X — u | ].



This Work

Theorem 1 (Informal). Assume P satisfies C-bounded normalized variance. Then there is
an (€, 0)-DP algorithm that:

1. returns an interior point of P and

2. uses n = poly(Ce'log 6 !) samples.




High-Level Algorithm Overview



Step 1: Place points into histogram bins

(Step 0: Approximate E[ | X — | ] using a separate algorithm.)

Use bin width ~ E[|X — u|]
| | |
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* The domain of P is partitioned into contiguous bins B of a fixed width

o Each bin counts the number of samples X, ..., X, that land in the bin



Step 2: Add truncated Laplacian noise to each bin

A Before Truncated
Laplace Noise
After  Truncated
Laplace Noise
=
N
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e Each bin receives a random amount of noise sampled from a truncated
Laplace distribution

* The Laplace noise ensures differential privacy



Step 3: Find two bins with sufficiently large loads,
and return any point between them.

two large disjoint bins

<N
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return /

e Intuitively, any point in-between two very full bins must be an interior point

* We are not required to know where the samples are in these two full bins,
which is convenient for privacy



How C-Boundedness Helps

two large disjoint bins

<N

density

return /

Problem 1:
* The samples could be too spread out, so that there are no large bins

Key Idea:
* By Chebyshev’s Inequality, a large fraction of mass is concentrated within a
constant number of standard deviations

* By C-boundedness, a large fraction of mass thus is concentrated within a
constant number of bins



How C-Boundedness Helps

two large disjoint bins

<N

density

return /

Problem 2:
* The samples could be too concentrated, so that there is only one large bin

Key Idea:

* C-boundedness tells us that outliers are not what determines std dev
* Suppose that the points are very concentrated in one bin

* Then the std dev is smaller than the size of a bin

e But this contradicts the definition of the bin size!



This Work

Theorem 1 (Informal). Assume P satisfies C-bounded normalized variance. Then there is
an (€, 0)-DP algorithm that:

1. returns an interior point of P and

2. uses n = poly(Ce'log 6 !) samples.




The Private Approximate Median Problem

a - approximate medians

density

Private a-Approximate Median Problem:

e Given ni.i.d. samples X, ...,X ~ P, privately return a point y between the

0.5 — a and 0.5 4+ a quantiles of the distribution



This Work

Theorem 2 (Informal). Assume P satisfies C-bounded normalized variance around the
median. Then there is an (€, 0)-DP algorithm that:

1. returns an a-approximate median of P and

2. uses n = poly(Ca~ e 'log 6~ !) samples.

Theorem 1 (Informal). Assume P satisfies C-bounded normalized variance. Then there is
an (e€,0)-DP algorithm that:

1. returns an interior point of P and

2. uses n = poly(Ce 'log 5 !) samples.




Conclusion

* Differential Privacy makes even the simplest problems challenging

* A single framework formalizing the intuition that the lower bound
applies only to pathological distributions

* Algorithms for interior point problem and approximate medians

Thank you!



