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The Interior Point Problem
Isn’t this trivial? 

Just return any sample .Xi

Interior Point Problem: 
• Given  i.i.d. samples , return a point  s.t.n X1, …, Xn ∼ P y

inf support(P) ≤ y ≤ sup support(P) .



The Interior Point Problem

Private Interior Point Problem: 
• Given  i.i.d. samples , privately return a point  s.t.n X1, …, Xn ∼ P y

Isn’t this trivial? 
Just return any sample .Xi

inf support(P) ≤ y ≤ sup support(P) .



Differential Privacy (DMNS ’06)



Differential Privacy (DMNS ’06)
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An algorithm  is -Differentially Private if 

• for all pairs of “neighboring” datasets ,  

• for all events  

A (ϵ, δ)
D D′￼

E ⊆ Range(A)

Pr[A(D) ∈ E] ≤ eϵ Pr[A(D′￼) ∈ E] + δ



Immediate Corollary: When  is continuous, the problem is intractable!P

Theorem (BNSV’15). Any -differentially private algorithm that 
solves the interior point problem must use at least  samples, where  

(ϵ, δ)
n

n = Ω(log* |domain of P | )

A Surprising Impossibility Result (BNSV ’15) 

This is bad news for computing: 
median, mean, half spaces, etc.



Related Work: Bypassing the Impossibility Result

Distributional Assumption

[KV18] Assume data is Gaussian

[DL09, TVGZ20,  
BAM20, AD20] 

Assume probability density is lower 
bounded at every point in some fixed-sized 
interval around the median

[HRS20] Assume a smoothness property everywhere

Takeaway: Bun et al’s lower bound seems to apply only to 
very “unusual” distributions.



This Work

Theorem 1 (Informal). Assume  satisfies -bounded normalized variance. Then there is 
an -DP algorithm that: 

1. returns an interior point of  and 

2. uses  samples.

P C
(ϵ, δ)

P

n = poly(Cϵ−1 log δ−1)

We define this distributional assumption next!



What is a -bounded distribution?C

Definition: 
• A distribution  with mean  satisfies -bounded normalized 
variance if  

 

P μ C

𝔼X←P[ |X − μ |2 ] ≤ C ⋅ 𝔼X←P[ |X − μ | ]

Examples include: 
Uniform, Gaussian, Exponential, 
Laplace, Binomial, Poisson, etc.

standard deviation expected absolute deviation

Intuition: 
• Distributions with -bounded normalized variance are those for which the 
standard deviation serves as a constant-factor proxy for the expected absolute 
deviation .

O(1)

𝔼[ |X − μ | ]



This Work

Theorem 1 (Informal). Assume  satisfies -bounded normalized variance. Then there is 
an -DP algorithm that: 

1. returns an interior point of  and 

2. uses  samples.

P C
(ϵ, δ)

P

n = poly(Cϵ−1 log δ−1)



High-Level Algorithm Overview
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Step 1: Place points into histogram bins

• The domain of P is partitioned into contiguous bins B of a fixed width 

• Each bin counts the number of samples  that land in the binX1, …, Xn

(Step 0: Approximate  using a separate algorithm.)𝔼[ |X − μ | ]

Use bin width ≈ 𝔼[ |X − μ | ]
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After Truncated
Laplace Noise

Step 2: Add truncated Laplacian noise to each bin

• Each bin receives a random amount of noise sampled from a truncated 
Laplace distribution 

• The Laplace noise ensures differential privacy



IR

two large disjoint bins

return
point

d
en
si
ty

• Intuitively, any point in-between two very full bins must be an interior point 
•We are not required to know where the samples are in these two full bins, 
which is convenient for privacy

Step 3: Find two bins with sufficiently large loads,  
and return any point between them. 
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How C-Boundedness Helps

Problem 1:  
• The samples could be too spread out, so that there are no large bins

Key Idea: 
• By Chebyshev’s Inequality, a large fraction of mass is concentrated within a 
constant number of standard deviations 

• By C-boundedness, a large fraction of mass thus is concentrated within a 
constant number of bins



How C-Boundedness Helps

Problem 2:  
• The samples could be too concentrated, so that there is only one large bin

Key Idea: 
• C-boundedness tells us that outliers are not what determines std dev 
• Suppose that the points are very concentrated in one bin 
• Then the std dev is smaller than the size of a bin 
• But this contradicts the definition of the bin size! 
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This Work

Theorem 1 (Informal). Assume  satisfies -bounded normalized variance. Then there is 
an -DP algorithm that: 

1. returns an interior point of  and 

2. uses  samples.

P C
(ϵ, δ)

P

n = poly(Cϵ−1 log δ−1)



The Private Approximate Median Problem

Private -Approximate Median Problem: 

• Given  i.i.d. samples , privately return a point  between the 

 and  quantiles of the distribution

α
n X1, …, Xn ∼ P y

0.5 − α 0.5 + α



Theorem 2 (Informal). Assume  satisfies -bounded normalized variance around the 
median. Then there is an -DP algorithm that: 

1. returns an -approximate median of  and 

2. uses  samples.

P C
(ϵ, δ)

α P

n = poly(Cα−1ϵ−1 log δ−1)

This Work

Theorem 1 (Informal). Assume  satisfies -bounded normalized variance. Then there is 
an -DP algorithm that: 

1. returns an interior point of  and 

2. uses  samples.

P C
(ϵ, δ)

P

n = poly(Cϵ−1 log δ−1)



• Differential Privacy makes even the simplest problems challenging 

• A single framework formalizing the intuition that the lower bound 
applies only to pathological distributions 

• Algorithms for interior point problem and approximate medians

Thank you!

Conclusion


